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Abstract

Among the many methods available for the determination of inviscid fluxes across a sur-

face of discontinuity, the flux-difference-splitting technique that employs Roe-averaged variables

has been used extensively by the CFD community because of its simplicity and its ability to cap-

ture shocks exactly. This method, originally developed for perfect gas flows, has since been

extended to equilibrium as well as nonequilibrium flows. Determination of the Roe-averaged

variables for the case of a perfect gas flow is a simple task; however, for thermal and chemical

nonequilibrium flows, some of the variables are not uniquely defined. Methods available in the

literature to determine these variables, seem to lack sound bases. The present paper describes a

simple, yet accurate, method to determine all the variables for nonequilibrium flows in the Roe-

average state. The basis for this method is the requirement that the Roe-averaged variables form

a consistent set of thermodynamic variables. The present method satisfies the requirement that

the square of the speed of sound be positive.
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Symbols

inviscid flux Jacobian

factors defined in Eqn. (5)

speed of sound

specific heat at constant pressure for species i

specific heat at constant volume for translational and rotational energy for species i

specific heat at constant volume for vibrational energy for species i

=e + (u 2 + v2)/2, total energy (sum of internal and kinetic energies) per unit mass

sum of translational, rotational, and formation energies per unit mass of the gas mixture

sum of translational, rotational, and formation energies per mole of species i

vibrational energy per unit mass of the gas mixture
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vibrational energy per mole of species i

inviscid flux vectors in x- and y-directions

constants, 1.5 and 2.5 for atomic and molecular particles, respectively

=E + p/p, total enthalpy of the gas mixture

x- and y-components of the unit outward normal to an interface

pressure

=(u 2 + v2)/2, kinetic energy

universal gas constant

left- and right-eigenvector matrices of A

translational temperature

vibrational temperature

reference temperature, zero Kelvin

time

unknowns vector

velocity components in x- and y-directions, respectively

vector of production terms

molecular weight of species i

mass fraction of species i

_P/OPi

specific heat ratio in ideal gas

heat of formation of species i at reference temperature

vector of eigenvalues of matrix A

Op/O [ Pe V]

density of the gas mixture



9i partial density of species i

Subscripts:

e

i,j

n

L

R

t

V

electrons

indices for chemical species

normal to the interface

left side of the interface

right side of the interface

translational mode

vibrational mode

Introduction

In the numerical simulation of high speed flows, the flux-difference-splitting techniques

have been successfully employed in the determination of the inviscid fluxes across a surface of

discontinuity. Among these techniques, the one that uses the so-called Roe-averaged variables is

popular among the researchers because of its simplicity and ability to capture shocks exactly.

This is true for the case of perfect gases for which Roe [1] derived expressions for the necessary

variables in the Roe-average state. The procedure has since been extended to equilibrium flows

(see [2]-[5]), and to chemical and thermal nonequilibrium flows (see [6]-[8]). However, in all

these extension the simplicity associated with a perfect gas case is lost. In addition, some of the

Roe-averaged variables are not defined uniquely. This led to several methods for the determina-

tion of these variables, some of which are based on computational experience. However, these

methods lacked sound bases in their approach.

The present paper addresses this issue, and describes a method for the determination of the

Roe-averaged variables for thermal and chemical nonequilibrium flows. The method is simple,

accurate, and requires no approximations. The basis for the present method is a requirement that

the variables in the Roe-average state form a consistent set of thermodynamic variables. For the

case of an air model with charged particles, the procedure requires the determination of a vibra-

tional temperature for given values of vibrational energy and mixture composition. This, how-

ever, is a routine computation. For the case of a gas mixture with only inert particles, the method

gets considerably simplified. Finally, it is important that any such method yield physically mean-

ingful results in all cases, i.e., the square of speed of sound in the Roe-average state must be posi-



tive. Thepresentmethodsatisfiesthisrequirementfor all cases.

where

Analysts

ConsidertheEulerequationsfor two-dimensionalflowswritten in conservationform:

aU _F + _G = 0
_-+_xx ay (1)

T
U = [p, pu, pv, pE]

F = Epu, p+ pig 2, OUr, punJ T (2)

G = Epv, pvu, p + pv 2, pvnl T

We consider two-dimensional flows only for simplicity; the present analysis carries to three-

dimensional flows without any loss of generality. If a computational domain is discretized into

cells, and the unknowns are assumed to be discontinuous across the interface between two adja-

cent cells, then a question arises as to what is the flux across these surfaces of discontinuity? This

is a classical Riemann problem for which several approximate solvers are available. Among

these solvers, the one that uses Roe-averaged variables has been widely used by researchers in the

CFD community. Determination of the Roe-averaged variables for the perfect gas case is simple,

and these variables satisfy the jump conditions across normal shocks exactly. Adopting this

approach, the numerical flux across a surface of discontinuity is written as

F n = ffFnL+FnR+[XI(UR-UL)]/2 (3)

where U R and Ut. are the unknowns in the left and the right cells, respectively, and Fnt " and FnR

are the fluxes in the left and right cells normal to the common surface, respectively. The matrix

A, is the Jacobian of the inviscid fluxes, and is evaluated at the Roe-averaged state 0, which in

tumisafunctionofU L and U R. Thematrix A[ -1where the matrices R and _-1---- are

the left and the fight eigenvector matrices of the matrix A,. Roe [ 1] identified the properties this

matrix A should satisfy as the following:

(i) The matrix A constitutes a linear mapping from U to F.

(ii) As Ut. --_ U R _ U, _, (Ut: UR) _ A (U), where A = 3Fn/_U.

(iii) For any U L and U R , A, (U L, UR) • (U L - UR) = F L - F R .
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(iv) The eigenvalues of _, are linearly independent.

Roe determined the unknowns U, and hence the matrix A that satisfies these properties.

unknowns that determine the matrix A, its eigenvalues, and its eigenvectors are given by

u = au L + bu R v = av L + bv R H = aH L + bH R

where

Thc

(4)

a

Note that r =

= _L/E_L*,fPR] = I/(1 *r) b = _R/E_L*_R] = r/(1 *r)

pR_RZ-pL and a + b = 1, The speed of sound _ is given by

¢ = (7- l) (H-_)

where 7t =

(5)

(6)

(_2 4- p2)/2. Computing the variables u, v, and H using Eqn. (4) has since become

known as Roe-averaging. Flux difference splitting technique using Roe-averaged values has been

successfully used by many researchers in solving high speed flows.

Nonequilibrium Flows

Consider the governing equations for thermal and chemical nonequilibrium flows in two-

dimensions. The number of governing equations is N = n s + 2 + ne, where n s is the number of

chemical species considered in the chemistry model, and n e is the number of energy equations.

The other two equations come from conservation of x- and y-momentum. Gnoffo [6 & 9] consid-

ers a 11-species air model with two temperatures - translational and vibrational. In determining

the flux across a surface of discontinuity, he employs the flux-difference-splitting technique.

However, explicit expression for the variables in the Roe-average state are available for only

some of the variables. In his analysis, Gnoffo [6] uses these expressions, and makes approxima-

tions for the remaining variables, based on his computational experience. Other approximate

methods for the determination of these variables are available, (see Liu & Vinokur, [7], for exam-

ple). In the present paper we examine Gnoffo's multi-species, two-temperature model, and

present a method for the determination of the Roe-averages for all of the necessary variables with-

out making any approximations.

As in the ideal gas case, we consider two-dimensional flows for simplicity. The governing

equations for nonequilibrium flow of a multi-species, two-temperature gas written in conservation

form as described by Gnoffo [9] are as follows:



where

DU 9F 9G
-- ,xoyO-':'+--5":--+'_7-- = W (7)

T
U = [pi, pu, pv, pE, per]

F = _Piu, p+pu 2, puv, puH, puev] r (8)

G = [pi v, pvu, p + pv 2, puB, pvev] T

Only the convective terms are considered. The quantity W Eqn. (7) is a vector of the production

terms, and does not enter into the present analysis. Most of the analysis described here follows

Gnoffo's analysis with minor changes in the notations.

There are ns mass conservation equations - one for each chemical species considered, two

momentum conservation equations, and two energy conservation equations - one for total energy

and one for vibrational energy. The term H is the total enthalpy, and is equal to E +p/p where E

is the total energy given by etr + e V + q. The quantity err is the sum of translational, rotational, '

and formation energies of molecular and atomic particles, e v is the sum of vibrational, electronic,

and electron translational energies, and q = (u 2 + v 2)/2 is the kinetic energy. In the two-tem-

perature model the translational temperature, T, describes etr , and vibrational temperature, T v,

describes e v. Henceforth, we shall use the terms 'vibrational energy' to represent the sum of

vibrational, electronic, and electron translational energies. Note that the temperatures do not

appear explicitly in the governing equations. Also note that in the vibrational energy equation,

the term corresponding to the work done by the electron pressure gradient has been moved over to

the right hand side of the governing equations and lumped with the production terms. This has

lead to some simplifications in the analysis.

Before proceeding to the determination of the Roe-averaged variables and computing the

fluxes, it is useful to review the procedure for the determination of the energies. In the two-tem-

perature model, the translational and rotational modes are assumed to be fully excited, and hence

the heat capacities of these modes are independent of the temperature, and the internal energy is a

linear function of the translational temperature, i.e.,



T

etr, i (z) = f Cv, t,i(T')dT' +Ahf, i (9)

Tr,i

Without loss of generality we assume the reference temperature, Tref, to be equal to zero Kelvin.

Note that Cv, t, i are constants (independent of temperature), and are equal to 2.5R/W i for molec-

ular species and 1.5R/W i for atomic species. The quantity Ahf, i is the enthalpy of formation of

species i at the reference temperature.

Unlike the translational-rotational modes, the vibrational and electronic energy modcs arc

assumed to be only partially excited; hence the vibrational heat capacity depends on the vibra-

tional temperature. The heat capacity for the vibrational mode of species i can be evaluated by

utilizing the curve fits for the total heat capacity evaluated at T v, and subtracting out the constant

contribution from translational and rotational modes as follows:

Cv, v, i (Tv) = Cv, i (Tv) - Cv, t, i ( 1O)

Note that Cv, i (Tv) = Cp, i (Tv) - R/Wi. Curve fits for Cp, i in terms of T may be found in the

literature (see e.g., Prabhu and Erickson [10]). Integrating Cv, v, i from Tre f (equal to zero

Kelvin) to the required temperature T v we obtain ev, i, i.e.,

T V

ev, i(T v) = f Cv, v,i(T')dT" (11)

Tr,y

The energies per unit mass of the mixture are determined as follows:

ns - 1 ns

err = _., elf, ix i e v = _., ev, ix i (12)
i--I i=l

Note that the summation for translational energy is over all the species except the electrons; the

electron translational energy is included in the vibrational energy. Equations (9) - (12) are rela-

tions between the two energies, their respective temperatures, and the mixture composition. For

given values of the energies and the mixture composition, the translational and vibrational tem-

peratures can be determined. Similarly, if the temperatures and the mixture composition are

known, the energies can be computed. These are routine computations.

The component of flux normal to the common side between two cells is denoted by F n .

The Jacobian matrix A = i)Fn/3U can be evaluated (see Gnoffo [9]), and is given by
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A

(Sij x.nU - xi) Xinx t y 0 0

c_n x - Uu ( 1 - _) un x + U ( 1 - _) vn x - V _n x ddnx

ocj.ny - Uv ( 1 - _) Uny + V ( 1 - _) Uny + U _ny d:ny

(_-H) U Hn x- _Uu Hn x- _Uv (1 + 13) U d_U

- U e v e vn x e vny 0 U

(13)

The eigenvalues of A can be determined, and are given by

A = (U repeated (ns+ 1) times, U+c, U-c, U) (14)

Subscript i refers to species i and row i, and subscriptj refers to speciesj and column j, and 8ij is

the Kronecker delta. The quantities U - un x + Vny and V = vn x - Uny are the velocity compo-

nents normal and parallel to the cell interface respectively, n x and ny are the x- and y-components

of the unit outward pointing normal to the interface respectively, x i are the mass fractions of the

constituent species, and c is the speed of sound defined by

n$

2

c = _., Ocixi + _5(H- 2q) + #?ev
i=l

(15)

The quantities O_i, i = 1.... , n s, [3, and _ are the partial derivatives of pressure, defined as fol-

lows:

+ _q - _ei - d:ev, i

n s - ]

R xi

wi
!

(16)

(17)

R Xe

(18)

In Eqn. (16), T' = T for heavy particles (atoms, molecules, and ions), and T' - T v for the elec-

trons. Note that the quantities Cv, t and Cv, v are given by

n s - 1 ns

Cv, t = _._ XiCv,,, i Cv, v = _.,XiCv, v, i (19)
i=1 i=1

As noted earlier, Cv, t, i = 2"5R/Wi for molecular particles and 1.5R/W i for atomic particles



making Cv, t dependant only on the mixture composition. Consequently, [3 also depends only on

the mixture composition, and is easily determined if the mixture composition is known. The

quantity _, however, depends on the mixture composition and Cv. v, which is a function of the

vibrational temperature.

The left- and right-eigenvector matrices of A corresponding to the eigenvalues in Eqn.

(14) are denoted by R and R -1 , and are given by

R ___

-c25tj ) t t t t -_xi- a.x. f_ux. _vx. -f_x.

-V -n n 0 0
y x

a.- Uc cn - f_u cn - f_v f_ ¢
] y Y

aj + Uc -Cny- _u -Cny - _v _ ¢

-Or .e _UeV _ive V 2) V -_e V c - Oev

(20)

5.. 0 x. x. 0
U t t

2

u -c ny [u+Cnx]/2 [u_Cnx]/2 0
2

v c nx [v+Cny]/2 [v-Cny]/2 0

[213q- _j]/13 cEv [H+cU]/2 [H-cU]/2 -0/_ 3

0 0 ev/2 ev/2 1

The matrices R, R

(21)

m

, and the eigenvalues of A defined by the Roe-averaged variables

(denoted by an overline) are required for the determination of the flux. In order to determine the

Roe-averaged variables, we start with the following necessary condition that _. must satisfy:

A (Fn) = _,A (U) (22)

where A ( ) = ( ) R - ( ) L" We are seeking a set of variables that satisfies the above equation

exactly. This equation has N components corresponding to the N governing equations. Of these

N components, the first n s components (corresponding to the species mass conservation equa-

tions) are satisfied, if we define

Yci = a (Xi) L + b (xi) R r_ = aul. + bu R _ = av L + bv R (23)

where, as in the ideal gas case, the quantities a and b are functions of densities in the left and

right cells, and are defined in Eqn. (5). Note that



n s n s n s

= a +b x (Xi)R = a+b = 1
i=1 i=1 i=1

(24)

This is a necessary condition if "_i' i - 1, .... 5 are to retain the property of the mass fraction.

Next, the components of Eqn. (22) _orresponding to the momentum equations are satisfied pro-

vided the condition

PI$

A(p) = Z (_i-_/)A(pi) +_A(pe) +_A(pev) (25)

i=1

is satisfied.

total energy and the vibrational energy equations are satisfied, if we define

Note that e = etr + e v . Finally, the components of Eqn. (22) corresponding to the

I

H =aH L+bH R 2 v = a(ev) L +b(ev) R (26)

Thus, we have determined the unknowns xi, u, v, _1, and _v in terms of the corresponding quanti-

ties in the left and right cells, and the density ratio across the interface. Of these, the relations for

_, P, and H are the same as in the ideal gas case. A condition similar to Eqn. (25) for the ideal

gas case is satisfied identically.

It remains to determine the quantities _i, _, and _ which are not defined explicitly. The

only condition they must satisfy is the Eqn. (25). We describe here a simple method to compute

these quantities. The basis for the present method is the requirement that these unknowns

together with _i and _v form a consistent set of thermodynamic variables. We consider two

cases - (1) a gas mixture containing charged particles and electrons, and (2) a gas mixture of only

neutral particles. The first case is treated in detail. The second case is much simpler, and the

results follow from the those of the first case.

Case 1: Gas mixture of charged particles and electrons:-

As noted earlier, 13 depends only on the mixture composition. Hence, we require that the

Roe-averaged quantity, _, depend only on the mixture composition at the Roe-average state, and

be determined using a relation similar to Eqn. (19). Accordingly, we write

10



v, ti= 1

(,_,1 !

where, as in Eqn. (21), we note

Hence, _ can be readily computed.

ns - 1 n s - 1

Z XiCv, t, i -" Z Xifv, t,i

i=1 i=1

(28)

Following a similar reasoning, we write for $ as in Eqn. (20)

Again, as in Eqn. (21) we note

(29)

nj

Cv,v =  icv, v,i(rv) (30)
i=l

The value of Cv, v, i, however, must be evaluated at an appropriate vibrational temperature, 7"v.

Since _v and the mixture composition 2 i are krlown, we require that the appropriate vibrational

temperature, 7'v, be consistent with ev and "_i" This temperature can be determined following a

routine computation. Once I"v is determined, _ can be evaluated.

Next, we proceed to the determination of ai. Following the argument of the previous

paragraph, we require ai to have the same functional relation with the other variables as in Eqn.

(18), and write

- RI"

a i - Wi

In this equation, all the quantities except ei and 7" are known. For electrons, 7" = l'v, which is

known, and _'i = _v, i = I'5RT"v/Wi" Hence ai for electrons is readily obtained, and may be

expressed as follows:

ae = R_rv[ l - 1.5 ([3 + _) l/W e + _q (32)

For the heavy particles we have 7" = 7'; hence we write

11



2i = 2,., i + ev, i = fiRT/Wi + Ahf, i + ev, i (33)

This equation together with Eqn. (31) provides a linear relation between _i and T, which may be

written as follows:

(34)

This equation alone is not sufficient to solve for 7' (or _i). Moreover, we need to satisfy the con-

dition in Eqn. (25). Hence we combine Eqns. (25), (32), and (34), and obtain the following:

A (p)

i=I

+ (O.e- _?:/)A(Oe) +BA(oe) +$A(Pe V)

(35)

Solving for the only unknown 1" in this equation, we find

A (p) - 136 (pc) - @A (PeV) - OteA (pc) t
ns - 1

+ _, [_ahi,_*(_*?_)_v.Ja(Pi)-R_'vtl-l.5(_*_)l,_(Pe)/W,
_. = i= 1 (36)

n -1
$

R_ A(p? [1-fi_]/N
iffil

Once T is determined, _i for the heavy particles can be computed using Eqn. (34). Although ?"

does not occur explicitly in any of the matrices used in the determination of the fluxes, it is desir-

able that the value of I' computed by Eqn. (36) is positive. In order to demonstrate this, we sim-

plify Eqn. (36) and write it in the following form:

(13+¢)

rF= aTL + bT R-

" 1 ( )A(P'v) - _, %,: (o? + R A[r., r v- _'v ]/%
i-I

n-1
$

RE
i=1

(37)

It has not been possible to further simplify Eqn. (37) so as to demonstrate that the values of 7"

given by this equation are always positive. However, on the right-hand-side of this equation, the

12



first two terms are positive and large, and the quantities in the numerator of the third term, being

differences of similar quantities, are small. In all the numerical exercises we have performed, the

third term has always been only a small fraction of the first two, and the value of 7" has been a

positive quantity. In the freestream this term is indeterminate, and is set equal to zero. Once 7" is

determined, _i for the heavy particles can be computed using Eqn. (34).

The Roe-averaged speed of sound may be determined using the following:

n$

c = _ otiYci+ _ [H-27/] +_ev (38)

i=1

Thus, all the Roe-averaged values of the quantities c_i, i = 1..... n s, _, _, and ?_ required to com-

pute the matrices A, R, and R are determined. These quantities satisfy the necessary condition

given by Eqn. (25) exactly. Together with "_i, rev, 7", and 7"v, they form a consistent set of thermo-

dynamic variables, which is the basis for the method of determining these quantities described

here. The method is simple, and makes no approximations. The only additional computation

required is the determination of the vibrational temperature, I"v for the given values of vibrational

energy, _v, and the mixture composition, J;i ; however, this is a routine computation.

It is necessary that the value of the square of the speed of sound computed by Eqn. (38) be
_2

positive. To demonstrate that c computed by Eqn. (38) is always positive, we start with the def-

inition of _r

ffl = aHL + bH R = ahr + bhR + ?/ + _

.where _ = (u R- UL) + (V R- VL) -->0. Next, we subst!tute h

above equation, and obtain the following:

(39)

etr+ ev+P/9 in the

m

H = etr+ev+p/p+q+8 (40)

where err = a (err) L + b (err) R and p/p = a (p/p) t. + b (p/p) R'

Next, in Eqn. (38), we substitute for _i from Eqns. (32) and (34), and for H from Eqn.

(40), and simplify to obtain

c = I][E+ (p/p) +5] +RT"VYCe/W e (41)

where E = ae L + bE R, and

13



n s - |

e = RT fixi/W i (42)

i=1

All the terms on the right hand side of equation (41) are greater than or equal to zero, proving that
_2

the square of the speed of sound, c , is always positive.

Case 2: Gas mixture of only neutral particles:-

The procedure described above is simplified when electrons are absent in the gas mixture.

The governing equations are the same as in Eqns. (7) and (8), and the thermodynamic relations
B-- 1

given in Eqns. (9), (10), (11), (12), and (14)-(19) as well as the matrices A, R, and R given in

Eqns. (13), (20), and (21) are also applicable.

The Roe-averaged quantities defined in Eqn. (23), (24), and (26) are applicable without

any changes. The necessary condition given in Eqn. (25) remains the same as well. Equation

(27) for the quantity _ is applicable. However, since electrons are absent, the quantity 0 is given

by

= _ (43)

and there is no need to determine the quantity 7"v. With 13+ _ = 0, the expression for _i, given

in Eqn. (34), can be written as follows:

(44)_i = R_F[1-fi_]/Wi + _ (_/-Ahf, i)

The temperature, 7", is determined following a similar procedure, and is given by

,,, h:i] ..-17"= A(P)-_A(Petr) +_E A(Pi)A /R E El-fi_]A(Pi)/Wi (45)
i=1 i=1

This equation for 1" can be simplified and may be written in the following elegant form:

7" = aT L + bT R (46)

This also demonstrates that the temperature 7" is always positive, and lies in between TL and TR .

After computing T, ct i can be determined using Eqn. (44).

The speed of sound given in Eqn. (38) is still applicable and can be written as

14



n$

_2 = ___ _ixi+ _[_l_ 2q_el: ] (47)

i=1

This can be further simplified, and written in the following form:

_2
c = I_ (e+ (p---_) + _i) (48)

again proving that the square of speed of sound determined by this method is always positive.

Conclusion

A new method is presented to determine the Roe-averaged variables required to determine

the inviscid fluxes in chemical and thermal nonequilibrium flows. These variables form a consis-

tent set of thermodynamic variables, and satisfy the necessary condition. The method is simple,

and does not make any approximations. The only additional computation required in determining

the Roe-averaged variables for gas mixtures with electrons, is the computation of vibrational tem-

perature for given values of the vibrational energy and the mixture composition. This, however,

is only a routine computation. A logical requirement that the square of the speed of sound be pos-

itive is satisfied.

Acknowledgments

This work was done at Lockheed Engineering & Sciences Company in Hampton, and was

supported by the Aerothermal Loads Branch, NASA, Langley Research Center, under the Con-

tract NAS 1-19000. The author wishes to thank Dr. Peter A. Gnoffo of Langley for the many help-

ful discussions.

References

1. Roe, P. L.: 'Approximate Riemann Solver, Parameter Vectors, and Difference Schemes,' Jour-

nal of Computational Physics, Vol. 43, 1981, pp. 357-372.

2. Montagne, J. -L., Yee, H. C., and Vinokur, M.: 'Comparative Study of High-Resolution

Shock-Capturing Schemes for Real Gases,' NASA Technical Memorandum 100004, Ames

Research Center, California, July 1987.

3. Glaister, P.: 'An Approximate Linearized Riemann Solver for the Euler Equations for Real

Gases,' Journal of Computational Physics, Vol. 74, 1988, pp. 382-408.

4. Prabhu, R. K., Stewart, J. R., and Thareja, R. R.: 'A Navier-Stokes Solver for High Speed

15



EquilibriumFlowsandApplication to Blunt Bodies,' AIAA Paper No. 89-0668, Presented at

the 27th Aerospace Sciences Meeting, Reno, Nevada, January 1989.

5. Liou, M-S., Van Leer, B., and Shuen, J-S.: 'Splitting of Inviscid Fluxes for Real Gases,' Jour-

nal of Computational Physics, Vol. 87, No. 1, 1990, pp. 1-24.

6. Gnoffo, E A.: 'Upwind Biased Point Implicit Relaxation Strategies for Viscous Hypersonic

Flows,' AIAA Paper No. 89-1972-CP, Presented at the 27th Aerospace Sciences Meeting,

Reno, Nevada, January 1989.

7. Liu, Y. and Vinokur, M.: 'Upwind Algorithms for General Thermo-Chemical Nonequilibrium

Flows,' AIAA Paper No. 89-0201, Presented at the 27th Aerospace Sciences Meeting, Reno,

Nevada, January 1989.

8. Grossman, B. and Cinnella, E: 'Flux-Split Algorithms for Flows with Non-Equilibrium

Chemistry and Vibrational Relaxation,' ICAM Report 88-0803, Virginia Polytechnic Institute

and State University, Blacksburg, Virginia, August 1988.

9. Gnoffo, E A., Gupta, R. N., and Shinn, J. L.: 'Conservation Equations and Physical Models

for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium,' NASA Technical Paper

2867, Langley Research Center, Hampton, Virginia, February 1989.

10. Prabhu, R. K., and Erickson, W. D.: 'A Rapid Method for the Computation of Equilibrium

Composition of Air to 15,000K,' NASA Technical Paper 2792, Langley Research Center,

Hampton, Virginia, March 1989.

16





Form Approved

REPORT DOCUMENTATION PAGE OMe Jvo,oTo4o,aa

Public tepoctmg burden for this collection of information _s estimated to aveeacJe 1 hour D_r resl:x_e_e, iRctudi/lg the time for revlew(ng instructions. %earc/711ng i_x_%ttng data source_.

gathering a_l malnta0nlng the data needed, and coml_let0ng anti rewewmg the collection of information¸ Send comments re<Jarding this burden estimate or any other aspect of th_
co|lectJon Of information, ancludlrlg suggestiOnS Cot reducing tht$ burden to Washington HeadQua_er$ ¢_ervJces, Directorate for Jnforrnat_on Operations and ReDOrtL t215 Jefferson

Davis Highway. _u_te 1204, Arlington, VA 22202-4302. and to the Office of Management a_l Budget, Paperwork Reduction Prc iect (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND' DATES COVERED

October 1994 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBEI_S

AN APPROXIMATE RIEMANN SOLVER FOR THERMAL AND CHEMICAL

NONEQUILIBRIUM FLOWS

6. AUTHO_S)

Ramadas K. Prabhu

7. PE_ORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lockheed Engineering & Sciences Company

Langley Program Office

144 Research Drive

Hampton, VA 23666

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and

Langley Research Center

Hampton, VA 23681-0001

"11. SUPPLEMENTARY NOTES

C NASI-19000

WU 232-01-04-06

8, PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORIN'G / MONITORING
AGENCY REPORT NUMBER

Space Administration

NASA CR-195003

Langley Technical Monitor: Allan R. Wieting

lZa. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 34

12b. DISTRIBUTIOI_ CODE"

' 13. ABSTRACT (Maximum 200 words)

Among the many methods available for the determination of inviscid fluxes across a sur-

face of discontinuity, the flux-difference-splitting technique that employs Roe-averaged variables

has been used extensively by the CFD community because of its simplicity and its ability to cap-

tur¢ shocks exactly. This method, originally developed for perfect gas flows, has since been

extended to equilibrium as well as nonequilibrium flows. Determination of the Roe-averaged

variables for the case of a perfect gas flow is a simple task, however, for thermal and chemical

nonequilibrium flows, some of the variables are not uniquely defined. Methods available in the
literature to determine these variables, seem to lack sound bases. The present paper describes a

simple, yet accurate, method to determine all the variables for nonequilibrium flows in the Roe-

average state. The basis for this method is the requirement that the Roe-averaged variables form

a consistent set of thermodynamic variables. The present method satisfies the requirement that

the square of the speed of sound be positive.

14. SU_E_ TERMS

Hypersonics

Nonequilibrium Flows

Riemann Solvers

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18, SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

17
16. Pt_ICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prl_crIDc=d D¥ AN_I Std Z]9-18
298-102


